

Soil and Plant Testing for Alfalfa

Ray Ward
Ward Laboratories, Inc
www.wardlab.com

Alfalfa Nutrient Removal

Nutrient	lbs/Ton	lbs/ 6 Tons
Nitrogen, N	55	330
Phosphorus, P2O5	12	72
Potassium, K2O	50	300
Calcium, Ca	28	168
Magnesium, Mg	5.3	32
Sulfur, S	5.0	30

Alfalfa Nutrient Removal

Nutrient lb/Ton lbs/ 6 To	ns
Copper, Cu 0.015 0.09	
Manganese, Mn 0.11 0.66	
Iron, Fe 0.33 2.0	
Zinc, Zn 0.11 0.66	
Boron, B 0.08 0.48	
Molybdenum, Mo 0.002 0.01	

Soil Sample for Fertility

Field & Zone Sampling

Clean Buckets and Sample Bags

Grid Sampling

- New technology using GPS, etc.
- Point sampling usually every 2.5 acre
- Measures variability within the field
- Variable rate apply phosphate, potash, zinc and lime

Grid Sampling

1	2	3	4	5	6	7	8
9	10	11	12	13	14	15	16
17	18	19	20	21	22	23	24
25	26	27	28	29	30	31	32

Nitrogen Deficiency

Light green to yellow color and spindly growth.

Plant Analysis (top 1/3 of the plant) Hay

– Deficient <3.20 % N <2.4 % N</p>

- Low 3.20 - 3.80 % N 2.4 - 2.8 % N

- Sufficient 3.81 - 4.60 % N 2.9 - 3.2 % N

- High >4.60 % N >3.2 % N

Phosphorus Deficiency: Blue-green color, stiff, stunted and erect growth. Leaflets often fold together, and the undersides and stems may be red or purplish.

Phosphorus Plant Analysis

• Deficient <0.20 % P

• Low 0.20 - 0.24 % P

• Sufficient 0.25 – 0.40 % P

High >0.40 % P

Phosphorus Recommendations for Alfalfa

Soil P Te	est, ppm P	4 ton/A	8 ton/A
M P-3 or B P-1		lbs P2O5/A lbs P2O5/A	
0-5	V Low	90 – 120	110 – 140
6-12	Low	60 – 85	80 – 105
13-25	Medium	30 – 55	60 – 75
26-50	High	0 – 25	20 – 45
>50	V High	None	None

Potassium Deficiency: White spots around edge of leaf starting with lower leaves. Leaves will eventually turn completely yellow and die.

Another look at Potassium Deficiency

Potassium Plant Analysis

• Deficient <1.70 % K

• Low 1.70 – 2.10 % K

• Sufficient 2.11 – 3.60 % K

• High >3.60 % K

Potassium Recommendations for Alfalfa

Soil K Test, ppm K 4 ton/A 8 ton/A lbs K2O/A lbs K2O/A NH4 Acetate 130 - 210 155 - 235 0-40 V Low 80 – 125 105 - 150 41-80 Low 81-120 Medium 45 – 75 70 - 100 121-200 High 50 - 65 25 – 40 >200 V High None None

Sulfur Deficiency: Light green, similar to N deficiency, spindly stems and weak growth.

Sulfur Plant Analysis

• Deficient <0.14 % S

• Low 0.14 – 0.20 % S

• Sufficient 0.21 - .30 % S

• High >0.30 % S

Sulfur Recommendations for Alflafa

Yield Goal	Sulfate soil test, ppm SO4-S			
Ton/A	6 ppm	9 ppm	12 ppm	
4	8	0	0	
6	19	11	4	
8	30	22	15	
10	41	33	26	

Sulfur Recommendation Example

Alfalfa 8 Ton/A Yield Goal

Sulfur Requirement is 5.5 lbs S/ton

Total S Required is 44 lbs S/A

Sulfate Soil Test is 8 ppm S

8 ppm X .3 X 8 inches = 19 lbs S/A

Recommendation is 25 lbs S/A

Boron Deficiency: Yellowing of leaves, shortened main stem growth making a dense top.

More Boron Deficiency

Figure 24. Boron-deficient alfalfa. Yellow to reddish yellow discoloration of the upper leaves. Often confused with leafhopper damage, which also causes yellowing of the tips of leaves.

Boron Plant Analysis

Deficient <10 ppm B

Low 10 – 20 ppm B

• Sufficient 21 – 50 ppm B

High >50 ppm B

Boron Soil Test and Recommendations

		Boron Rate
Boron Soil Test, ppm	Rating	Lbs B/A
0 – 0.25	Low	0.5 - 3.0
0.26 - 0.50	Medium	0.0 - 1.7
0.51 +	High	0

Alfalfa, clover, peanuts, cotton and sugar beets require more boron than other crops.

Molybdenum Deficiency

- Pale green and stunted as with nitrogen deficiency
- Plant Analysis

```
– Deficient <0.05 ppm Mo</p>
```

- Low 0.05 - 0.10 ppm Mo

- Sufficient 0.11 - 2.00 ppm Mo

– High >2.00 ppm Mo

Molybdenum Application

- Foliar Treatment
 - 2 ounces of Sodium Molybdate per acre in 30 gallons of water as a foliar
- Seed Treatment
 - 1/2 ounce of Sodium Molybdate per bushel

Liming or Correcting Soil Acidity

Calcium Deficiency

- Impaired root growth or rotting
- Petioles collapse on youngest mature leaves
- Plant Analysis

```
– Deficient < 0.51 % Ca</p>
```

- Low 0.51 - 1.01 % Ca

Sufficient 1.01 – 2.60 % Ca

– High >2.61 % Ca

Magnesium Deficiency

- Interveinal chlorosis of lower leaves
- Margins initially remain green
- Plant Analysis

```
Deficient <0.15 % Mg</li>
```

```
– Low 0.15 - 0.25 % Mg
```

Sufficient 0.26 - 0.70 % Mg

– High >0.70 % Mg

Iron Deficiency: Interveinal chlorosis of youngest leaves, bleached appearance.

Zinc, Iron, Manganese, Copper

- These nutrients are rarely deficient in alfalfa.
- Plant analysis may be a good way to evaluate availability of these 4 nutrients.
- Plant Analysis (sufficient)

– Zinc
16 – 70 ppm Zn

– Iron36 – 300 ppm Fe

– Manganese 31 – 150 ppm Mn

- Copper 5-16 ppm Cu

Thank You

